# Journal of Plant Science & Research



Volume 2, Issue 2 - 2015 © SN Tiwari 2015 www.opensciencepublications.com

# Identification of New Sources of Resistance against Brown Plant Hopper

# **Research Article**

# Neha Bhatt and SN Tiwari\*

Department of Entomology, G.B. Pant University of Agriculture and Technology, Pantnagar-263145 (U.S. Nagar), Uttarakhand, India

\***Corresponding author:** Dr. SN Tiwari, Department of Entomology, G.B. Pant University of Agriculture and Technology, Pantnagar-263145 (U.S. Nagar), Uttarakhand, India; E-mail: drsntiwari@gmail.com

#### Article Information: Submission: 25/06/2015; Accepted: 10/07/2015; Published: 16/07/2015

**Copyright:** © 2015 SN Tiwari, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

One hundred twenty rice genotypes belonging to Plant Hopper Screening (PHS) and Multiple Resistance Screening Trials (MRST) received from All India Co-ordinated Rice Improvement Programme (AICRIP) during kharif 2013 were evaluated against Brown Plant Hopper under glasshouse conditions at G.B.P.U.A.T. Pantnagr. During present study RP 2068-18-3-and CR3006-8-2 were found resistant while 10 other entries were recorded as moderately resistant against this insect in PHS. Under MRST none of the entries showed resistant reaction however RP 4918-228(S) and PTB33 showed moderate level of resistance against BPH.

Keywords: Brown Plant Hopper; Nilaparvata lugens; Oryza sativ; Screening; Resistance

## Introduction

Brown plant hopper (BPH), *Nilaparvatalugens* (Stal.) (Homoptera: Delphicidae) is a major pest of rice in several countries [1-3] where it cause 30-50% loss in yield [4,5]. Although, insecticides are used to control it in most of the agro-ecosystem, resistance in the rice genotype has been found to play significant role in reducing the population [6-8] and a number of varieties resistant to this insect pest are now available for commercial cultivation in many countries including India [9]. Substantial progress has been made in the area of evaluation of rice entries for resistance, however, promising varieties are not available for each and every agro-ecosystem including *tarai* and plains of Uttrakhand which are most frequently attacked by this pest. The present study was undertaken to identify the new sources of resistance against BPH so that resistant varieties could be developed for this region.

# **Material and Method**

One hundred twenty entries of Plant Hopper Screening trial (PHS) and Multiple Resistance Screening trial (MRST) received under All India Co-ordinated Rice Improvement Programme (AICRIP) *kharif* 2013were evaluated against brown plant hopper. In PHS PTB33 and RP 2068-18-3-5 were used as resistant check while TN1 was taken as susceptible check. In case of MRST Suraksha and PTB 33 were used as resistant check while TN1 was treated as susceptible check.

The adults of BPH were collected from stock culture maintained in glasshouse on TN1 since 2011. The stock culture was developed in aluminium rearing cages (200 X 80 X 92 cm) fixed with insect proof nylon net and glass. Approximately 10-15 adults were transferred on 50-60 days old potted plants of Taichung Native-1 (TN-1), placed in rearing cages. After one week adults were removed from pots. The cages were examined regularly for the presence of predators and

other insect species. Whenever the predators or other species of insects were observed in the cages, they were removed to facilitate the development of BPH population.

Seed bed screening method was used for bulk screening of entries. The purpose of bulk screening was to reject the susceptible ones and to find out entries showing moderate to high level of resistance against BPH. All the screening tests were done in plastic tray size of 42cmx32cmx7cm in glasshouse.

Plastic petridishes were marked with respective entry number and fifty seeds of each entry were kept on double layered moist filter papers. Water was added to each petridish for seed soaking which was removed after 24 h. Thereafter, petridishes were placed in incubator maintained at 30 °C temperature for efficient germination. The germinated seeds of each test entry were sown in the tray (42cmx32cmx7cm) with the help of forceps. Each tray was having 17 rows of different entries. Twenty pre-germinated seed was sown in each row and labelled. The distance between the rows was maintained at 2 cm apart, while distance between seeds was kept at 1 cm. Nine rows of entries were alternated with one row of susceptible check TN 1. After completing the sowing sufficient water was added to ensure the healthy growth of seedlings. At 12 days after sowing (DAS) tray was filled with 5 cm water level and each row was thinned to about 20 seedlings / row after which the 2<sup>nd</sup> and 3<sup>rd</sup> instar nymphs of BPH from the culture were distributed uniformly on the test entries at the rate of approximately 10 nymphs per seedling. Number of dead and surviving plant of each entry was counted at two day interval. The

| Table 1: Reaction of AICRIP, PHS(2013) entries to N. lugens under glasshouse condition. |  |
|-----------------------------------------------------------------------------------------|--|
|                                                                                         |  |

|         |                        |                                       | Per cent seed | Mean mortality  | Final  | Resistance |         |
|---------|------------------------|---------------------------------------|---------------|-----------------|--------|------------|---------|
| Ent No. | Designation            | Cross                                 | Istscreening* | IInd screening* | (%)    | score      | grade** |
| PHS1    | CR 3006-8-2            | Pusa44/Salkathi                       | 10 (5)        | 5 (1)           | 7.50   | 3          | R       |
| PHS 2   | RP 5312-66-2-2-2-3-2   | Samba Mahsuri/ Sinnasivappu           | 45 (7)        | 70 (9)          | 57.50  | 7          | MS      |
| PHS 3   | RP 5320-124-10-1-2-2-1 | Improved samba Mahsuri/Sinnasivappu   | 20 (5)        | 10 (5)          | 15.00  | 5          | MR      |
| PHS 4   | IR 65482-7-216-1-2-B   | IR 31917-45-3-2-2*3/O. australieansis | 15 (5)        | 20 (5)          | 17.50  | 5          | MR      |
| PHS 5   | IR 71033-121-15        |                                       | 80 (9)        | 75 (9)          | 77.50  | 9          | S       |
| PHS 6   | C2485-7-3-45-1R        | Khandagiri/IR 72402-B-P-25-3-1        | 100 (9)       | 85 (9)          | 92.50  | 9          | S       |
| PHS 7   | CR 2702-62-6           | Swarna/Ratna                          | 80 (9)        | 75 (9)          | 77.50  | 9          | S       |
| PHS 8   | GNV 05-02-1            | Mutant of IR 64                       | 75 (9)        | 45 (7)          | 60.00  | 7          | MS      |
| PHS 9   | RAU 678-82-4           | Sanlcheap-2/Sita                      | 65 (9)        | 55 (7)          | 60.00  | 7          | MS      |
| PHS10   | TN1                    | Check                                 | 100 (9)       | 100 (9)         | 100.00 | 9          | S       |
| PHS11   | MTU 1121               | BPT 5204/MTU DP 13                    | 45 (7)        | 65 (9)          | 55.00  | 7          | MS      |
| PHS 12  | RP Bio 4919-501        | KMR3/ O.rufipogon BC2F14              | 95 (9)        | 40 (7)          | 67.50  | 9          | S       |
| PHS 13  | CRK 27                 | FR42 B/ Pankaj                        | 90 (9)        | 75 (9)          | 82.50  | 9          | S       |
| PHS 14  | CR 2754-62-3           | Swarna/Gayatri                        | 80 (9)        | 100 (9)         | 40.00  | 7          | MS      |
| PHS 15  | NDR 3325               | NDR 3025-1/NDR 359                    | 75 (9)        | 55 (7)          | 65.00  | 9          | S       |
| PHS 16  | RP Bio 4919-409        | KMR3/ O.rufipogon BC2F15              | 65 (9)        | 60 (7)          | 62.50  | 9          | S       |
| PHS 17  | CR 2711-149            | Tapaswini/Dhobanumberi                | 15 (5)        | 35 (7)          | 25.0   | 5          | MR      |
| PHS 18  | HKR 06-47              | PR 116/ HKR 96-54                     | 55 (7)        | 55 (7)          | 55.00  | 7          | MS      |
| PHS 19  | NDRK 50026             | Vijeta/CSR 89 IR 23                   | 75 (9)        | 65 (9)          | 70.00  | 9          | S       |
| PHS 20  | PBT 33                 | Check                                 | 35 (7)        | 20 (5)          | 27.50  | 7          | MS      |
| PHS 21  | CR 2274-3-1-2-1-1      | Jalaprava/ Mahsuri                    | 15 (5)        | 30 (7)          | 22.50  | 5          | MR      |
| PHS 22  | R 2212-RF-75           | Danteshwari/ Dagaddeshi               | 60 (7)        | 55 (7)          | 57.50  | 7          | MS      |
| PHS 23  | TR 2004-029            | let 15683/iet 15687                   | 85 (9)        | 95 (9)          | 90.00  | 9          | S       |
| PHS 24  | CR 2459-12-8           | Swarna/IR 64                          | 35 (7)        | 45 (7)          | 40.00  | 7          | MS      |
| PHS 25  | KAUM 179-1             |                                       | 25 (5)        | 15 (5)          | 20.00  | 5          | MR      |
| PHS28   | KAUM 179-4             |                                       | 20 (5)        | 25 (5)          | 22.50  | 5          | MR      |
| PHS29   | KAUM 179-5             |                                       | 35 (7)        | 55 (7)          | 45.00  | 7          | MS      |
| PHS30   | TN1                    | Check                                 | 100 (9)       | 100 (9)         | 100.00 | 9          | S       |
| PHS31   | KAUM 179-6             |                                       | 45 (7)        | 85 (9)          | 65.00  | 9          | S       |
| PHS32   | KAUM 179-7             |                                       | 75 (9)        | 75 (9)          | 75.00  | 9          | S       |
| PHS33   | KAUM 180-1             |                                       | 40 (5)        | 75 (9)          | 57.50  | 7          | MS      |
| PHS34   | KAUM 180-2             |                                       | 65 (9)        | 40 (7)          | 52.50  | 7          | MS      |
| PHS35   | KAUM 180-3             |                                       | 75 (9)        | 55 (7)          | 65.00  | 9          | S       |
| PHS36   | KAUM 181-1             |                                       | 90 (9)        | 85 (9)          | 87.50  | 9          | S       |
| PHS37   | KAUM 182-1             |                                       | 20 (5)        | 25(5)           | 22.50  | 5          | MR      |
| PHS39   | CB11 607               | CB04 110/ADT 43                       | 90 (9)        | 95 (9)          | 92.50  | 9          | S       |
| PHS40   | RP 2068-18-3-5         | Check                                 | 10 (5)        | 5 (1)           | 7.50   | 3          | R       |
| PHS41   | CB11 565               | CB04 110/ADT 43/BPT5204               | 80 (9)        | 30 (7)          | 55.00  | 7          | MS      |
| PHS42   | CB 11 609              | CB 04 110/JGL 1798                    | 90 (9)        | 70 (9)          | 80.00  | 9          | S       |

# SN Tiwari

| PHS43 | CB 602    | CB 04 110/CB 05 501           | 95 (9)        | 70 (9)  | 82.50  | 9 | S  |
|-------|-----------|-------------------------------|---------------|---------|--------|---|----|
| PHS44 | CB 08 702 | IR 80013-B-141-4              | 55 (7)        | 80 (9)  | 67.50  | 9 | S  |
| PHS45 | CB 06 803 | PMK-3/ Norungan               | 100 (9)       | 100 (9) | 100.00 | 9 | S  |
| PHS46 | CB 06 563 | ADT 37/IET 16618              | 65 (9)        | 75 (9)  | 70.00  | 9 | S  |
| PHS47 | CB 126    | BPT 5204/CO50                 | 90 (9)        | 55 (7)  | 72.50  | 9 | S  |
| PHS48 | CB 09 512 | OR 1797-4/Varapukudanchan     | 85 (9)        | 90 (9)  | 87.50  | 9 | S  |
| PHS49 | CB 09 516 | RR 4065-381-245/UPR-2893-97   | 80 (9)        | 75 (9)  | 77.50  | 9 | S  |
| PHS50 | TN1       | Check                         | 100 (9)       | 100 (9) | 100.00 | 9 | S  |
| PHS51 | TNRH 344  | COMS 24A/CB 344R              | 75 (9)        | 70 (9)  | 72.50  | 9 | S  |
| PHS52 | TNRH 337  | COMS 23 A/CB 237 R            | 80 (9)        | 95 (9)  | 87.50  | 9 | S  |
| PHS53 | TNRH 222  | COMS 23 A/CB 222 R            | 80 (9)        | 75 (9)  | 77.50  | 9 | S  |
| PHS54 | TRG 167   | (Bph18)(IR 65482-7-216-1-2)   | 70 (9)        | 35 (7)  | 52.50  | 7 | MS |
| PHS55 | TRG 170   | (Bph20/21)(IR 71033-121-15)   | 15 (5)        | 35 (7)  | 25.00  | 5 | MR |
| PHS56 | KNM 71    | WGL 32100/NLR 34452/WGL 14377 | 100 (9)       | 70 (9)  | 85.00  | 9 | S  |
| PHS58 | KNM 78    | JGL 7046/NLR 34452/WGL 14377  | 55 (7)        | 70 (9)  | 62.50  | 9 | S  |
| PHS59 | KNM 109   | MTU 1010/JGL 13595            | 70 (9)        | 70 (9)  | 70.00  | 9 | S  |
| PHS61 | KNM 110   | MTU 1010/JGL 13595            | 30 (7)        | 60 (7)  | 45.00  | 7 | MS |
| PHS62 | KNM 113   | MTU 1010/JGL 13595            | 55 (7)        | 95 (9)  | 75.00  | 9 | S  |
| PHS63 | KNM 116   | MTU 1010/JGL 13595            | 50 (7)        | 75 (9)  | 62.50  | 9 | S  |
| PHS64 | KNM 118   | MTU 1010/JGL 13595            | 50 (7)        | 25 (5)  | 37.50  | 7 | MS |
| PHS65 | KNM 120   | MTU 1010/JGL 13595            | 45 (7)        | 70 (9)  | 57.50  | 7 | MS |
| PHS66 | KNM 122   | MTU 1010/JGL 13595            | 35 (7)        | 55 (7)  | 45.00  | 7 | MS |
| PHS67 | KNM 124   | MTU 1010/JGL 13595            | 15 (5)        | 35 (7)  | 25.00  | 5 | MR |
| PHS68 | KNM 134   | WGL 32100/JGL 3844            | 70 (9)        | 55 (7)  | 62.50  | 9 | S  |
| PHS69 | KNM 468   | IET 20473/JGL 11118           | 95 (9)        | 85 (9)  | 90.00  | 9 | S  |
| PHS70 | TN1       | Check                         | 100 (9)       | 100 (9) | 100.00 | 9 | S  |
| PHS71 | KNM 489   | JGL 13595/JGL 11470           | 70 (9)        | 75 (9)  | 72.50  | 9 | S  |
| PHS72 | KNM 539   | JGL 11727/JGL 11470           | 55 (7)        | 70 (9)  | 62.50  | 9 | S  |
| PHS73 | KNM 557   | JGL 13595/JGL 11470           | 65 (9)        | 95 (9)  | 80.00  | 9 | S  |
| PHS74 | KNM 561   | JGL 13595/JGL 11470           | <b>80</b> (9) | 90 (9)  | 85.00  | 9 | S  |
| PHS75 | KNM 563   | JGL 13595/JGL 11470           | 80 (9)        | 85 (9)  | 82.50  | 9 | S  |
| PHS76 | KNM 604   | MTU 1010/JGL 11727            | 50 (7)        | 50 (9)  | 50.00  | 7 | MS |
| PHS77 | KNM 605   | MTU 1010/JGL 11727            | 60 (7)        | 30 (7)  | 45.00  | 7 | MS |
| PHS78 | KNM 620   | MTU 1010/JGL 11727            | 80 (9)        | 45 (7)  | 62.50  | 9 | S  |
| PHS79 | KNM 637   | MTU 1010/JGL 3855             | 70 (9)        | 70 (9)  | 70.00  | 9 | S  |
| PHS90 | TN1       |                               | 100 (9)       | 100 (9) | 100.00 | 9 | S  |

\*Value in parenthesis indicates the rating score at each screening. \*\* I= Immune, HR= Highly Resistant, R=Resistant, MR=Moderately Resistant, MS=Moderately Susceptible, S=Susceptible

Table 2: Reaction of AICRIP, MRST(2013) entries to *N. lugens* under glasshouse condition.

| Ent | Designation     | Designation Cross    |                               | Per cent seedling<br>mortality   |                                 | Mean             | Final | Resist-         |
|-----|-----------------|----------------------|-------------------------------|----------------------------------|---------------------------------|------------------|-------|-----------------|
| No. | Designation     |                      | I <sup>st</sup><br>screening* | II <sup>nd</sup> screen-<br>ing* | III <sup>rd</sup><br>screening* | mortality<br>(%) | score | ance<br>grade** |
| 1   | KAUM 166-2      | Makom/PTB 9          | 65 (9)                        | 60 (7)                           | 65(9)                           | 53.75            | 7     | MS              |
| 2   | KAUM 168-1      | Pavizham/Arikkailari | 60 (7)                        | 65 (9)                           | 75(9)                           | 65.00            | 9     | S               |
| 3   | CB 07 540       | ADT 39/Mutant        | 55 (7)                        | 75 (9)                           | 70 (9)                          | 72.50            | 9     | S               |
| 4   | RNR 14956       | NLR 34449/ JGL 3844  | 50 (7)                        | 85 (9)                           | 70 (9)                          | 73.75            | 9     | S               |
| 5   | RNR 15038       | MTU 1010/JGL 3855    | 60 (7)                        | 65 (9)                           | 85 (9)                          | 63.75            | 9     | S               |
| 7   | RP Bio 4918-142 | Swarna/O. nivaralls  | 65 (9)                        | 75 (9)                           | 70 (9)                          | 77.50            | 9     | S               |
| 8   | RP Bio 4918-236 | Swarna/O. nivara ILs | 60 (7)                        | 65 (9)                           | 70 (9)                          | 71.25            | 9     | S               |
| 9   | RP Bio 4918-24K | Swarna/O. nivara ILs | 50 (5)                        | 75 (9)                           | 80 (9)                          | 73.75            | 9     | S               |
| 10  | TN1             | S. check             | 85 (9)                        | 100 (9)                          | 90 (9)                          | 90.00            | 9     | S               |
| 11  | RP Bio 4918-248 | Swarna/O. nivara ILs | 75 (9)                        | 55 (7)                           | 55 (7)                          | 61.25            | 9     | S               |
| 12  | RP Bio 4919-198 | KMR3/ O. rufipogon   | 60 (7)                        | 75 (9)                           | 55 (7)                          | 56.25            | 7     | MS              |
| 13  | RP Bio 4919-501 | KMR3/ O. rufipogon   | 65 (9)                        | 80 (9)                           | 75 (9)                          | 75.00            | 9     | S               |
| 14  | RP Bio 4919-40  | KMR3/ O. rufipogon   | 35 (7)                        | 60(7)                            | 60 (7)                          | 57.50            | 7     | MS              |
| 15  | RP 4918-221(S)  | Swarna/O. nivara     | 65 (9)                        | 60 (7)                           | 50(7)                           | 60.00            | 7     | MS              |
| 16  | RP 4918-228(S)  | Swarna/O. nivara     | 15 (5)                        | 20 (5)                           | 25 (5)                          | 20.00            | 5     | MR              |

## SN Tiwari

| 17 | RP Bio 4919-50-12 | KMR3/ O. rufipogon | 50 (7) | 35 (7) | 30 (7) | 51.25  | 7 | MS |
|----|-------------------|--------------------|--------|--------|--------|--------|---|----|
| 18 | RP Bio 4919-50-13 | KMR3/ O. rufipogon | 55 (7) | 75 (9) | 80 (9) | 71.25  | 9 | S  |
| 19 | RP Bio 4919-363-5 | KMR3/ O. rufipogon | 50 (7) | 65 (9) | 65 (9) | 66.25  | 9 | S  |
| 20 | Suraksha          | R. check           | 20 (5) | 30 (7) | 30 (7) | 27.50  | 7 | MS |
| 21 | W1263*(DRR)       |                    | 70 (9) | 60(7)  | 45(7)  | 58.33  | 7 | MS |
| 22 | SB 143            |                    | 35 (7) | 35 (7) | 30 (7) | 33.33  | 7 | MS |
| 23 | SB 319            |                    | 40 (7) | 50 (7) | 50 (7) | 47.50  | 7 | MS |
| 24 | SB 479            |                    | 55 (7) | 90 (9) | 70 (7) | 62.50  | 9 | S  |
| 25 | CO 43             |                    | 40(7)  | 25 (5) | 20 (5) | 33.75  | 7 | MS |
| 26 | PTB 33            |                    | 25 (5) | 10 (5) | 25 (5) | 20.00  | 5 | MR |
| 26 | PTB 33            |                    | 25 (5) | 10 (5) | 25 (5) | 20.00  | 5 | MR |
| 27 | W 1263 (CBT)      |                    | 60(7)  | 35(7)  | 65(9)  | 56.25  | 7 | MS |
| 28 | W1263*(ACC)       |                    | 35(7)  | 50(7)  | 50(7)  | 48.75  | 7 | MS |
| 29 | DRRH-2            |                    | 45(7)  | 75(9)  | 60(7)  | 57.50  | 7 | MS |
| 30 | TN1               |                    | 100(9) | 100(9) | 100(9) | 100.00 | 9 | S  |

\*Value in parenthesis indicates the rating score at each screening.

\*\* I= Immune, HR= Highly Resistant, R=Resistant, MR=Moderately Resistant, MS=Moderately Susceptible, S=Susceptible.

final score was taken when the seedlings of susceptible check variety TN-1 became 100 percent dead. The rating was based on the following scoring system:

#### **Rating scale**

| Scale | Percent dead seedlings | Level of resistance         |
|-------|------------------------|-----------------------------|
| 0     | 0                      | Immune (I)                  |
| 1     | 1-5                    | Highly resistant (HR)       |
| 3     | 6-9                    | Resistant (R)               |
| 5     | 10-25                  | Moderately resistant (MR)   |
| 7     | 26-60                  | Moderately susceptible (MS) |
| 9     | 61-100                 | Susceptible (S)             |

In the above rating scale particulars in 'scale' 'and level of resistance' were taken from [9] but the ranges for percent dead seedlings were constructed to facilitate the rating based on percent seedling mortality due to BPH damage.

#### **Results and Discussion**

In Plant Hopper Screening trial (PHS) mean seedling mortality varied from 7.5 to 100 percent among 90 entries screened [Table 1]. Breeding lines RP 2068-18-3-and CR 3006-8-2 recorded 7.5 percent seedling mortality and rated as resistant against BPH. Moderate level of resistant (MR) was observed in RP 5320-124-10-1-2-2-1, IR 65482-7-216-1-2-B, CR 2711-149, CR 2274-3-1-2-1-1, KAUM 179-1, KAUM 179-4, KAUM 182-1, TRG 170 and KNM 124 which showed 15 to 25 percent seedling mortality. The rest of the entries were moderately susceptible or susceptible against brown plant hopper.

These results were in accordance with multilocation trials of AICRP [10] where breeding lines *viz.*, IR 65482-7-216-1-2-B, CR 2711-149, KAUM 179-1 and KAUM 182-1were reported as promising while tests entry CR 3006-8-2 reported resistant.

In the Multiple Resistance Screening trial (MRST) only one breeding line RP 4918-228(S) showed moderate level of resistance in which mean seedling mortality was 20 per cent. Resistant check PTB 33 also showed moderate level of resistance. Rest of the 28 entries showed 33.75 to 100 per cent mortality and exhibited moderate susceptibility to susceptible reactions against BPH presented in table 2. These results were in confirmation with trial conducted at Ludhiana in greenhouse where RP Bio 4918-228(S) was identified as promising with a mean damage score of 1.5 [10].

# Conclusion

Results indicate that among all genotype screened CR 3006-8-2 and RP 2068-18-3-5 were found to be promising against brown plant hopper at Pantnagar and could be used in developing resistant varieties against BPH for *tarai* region of Uttrakhand.

### Acknowledgement

Authors are highly thankful to Indian Institute of Rice Research Hyderabad for providing the PHS and MRST entries for experimental purpose.

#### References

- Dyck VA, Thomas B (1979) The brown planthopper problem. In: Brown planthopper: threat to rice production in Asia. International Rice Research Institute, Manila (Philippines): 3-17.
- Huang Z, Shu L, Li X, Zhang Q (2001) Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet 102: 929-934.
- Yang HY, Ren X, Weng QM, Zhu LL, He GC (2002) Molecular mapping and genetic analysis of a rice brown planthopper (*Nilarparvatalugens*Stål) resistance gene. Hereditas 136: 39-43.
- Pathak PK, Verma SK, Lal MN (1983) Occurance of insect pests of rice. Directorate of Experiment Station, GB Pant University of Agriculture and Technology, Pantnagar: 69-71.
- Sogawa K, Cheng CH (1979) Economic thresholds, nature of damage, and losses caused by the brown planthopper. In: Brown planthopper: threat to Rice production in Asia. International Rice Research Institute, Manila (Philippines): 125-144.
- Pathak MD, Dhaliwal GS (1986) Insect control. In: MS Swaminathan and SK Sinha (eds.). Global aspects of food production. Tycooly International, Oxford, UK: 357-386.
- Dhaliwal GS, Dilawari VK, Saini RS (1993) Host plant Resistance to insects: Basic concepts. In : G.S. Dhaliwal and V.K.Dilawari(eds.). Advances in Host

Plant Resistance to Insects. Kalyani publishers, New Delhi, India :1-30.

- Dhaliwal GS, Dilawari VK (1996) Host plant resistance in integrated pest management. In: RK Upadhayay, KG Mukherjee and RL Rajak (eds.). IPM System in Agriculture. Vol 1 Aditya Books Pvt. Ltd., New Delhi, India: 264-315.
- 9. Heinrichs EA, Medrano FG, Rapusas HR (1985) Genetic evaluation for insect resistance in rice. IRRI, Los Banos, Philippines 356.
- Anonymous (2013) Progress Report 2013 Vol 2. Entomology and Pathology. All India Co-ordinated Rice Improvement Pogramme. Directorate of Rice Research, Hyderabad, India.