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Abstract
Density functional theory (DFT) was employed to obtain energy (E), ionization potential (IP), bond dissociation enthalpy (BDE) of O-H bond and stabilization 
energy (∆Eiso) in order to infer the scavenging activity of 3-phenyl-4-hydroxy coumarin derivatives. Spin density calculations were also performed for the 
proposed antioxidant activity mechanism. The unpaired electron formed by the hydrogen abstraction from the phenolic hydroxyl group of 3-phenyl-4-hydroxy 
coumarin derivatives localized on the phenolic oxygen at positions 4 and 3’, the C3 carbon, the C2’ and C6’ carbon atoms at ortho positions and C4’ carbon 
atom at para position. The lowest phenolic oxygen contribution corresponded to the highest scavenging activity value. It was found that antioxidant activity 
depends on the presence of a phenyl group at position 3 of coumarin skeleton and presence of a hydroxyl at the C4 and C3’. In addition, the presence of 
chlorine atom at position 6 on the coumarin skeleton leads to decrease O-H BDE and increase antioxidant activity significantly. There is a correlation between 
IP and O-H BDE and the capacity of scavenging peroxy radicals and the percentage of the hydroxyl radical scavenging activity.
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Introduction
Coumarins (known as 1,2-benzo pyrones) comprise an important 

group of low molecular weight phenolics that have been widely used 
for prevention and treatment of many diseases [1], Figure 1 shows the 
structure of the parent compound, coumarin.” Coumarins possess 
anti-inflammatory, antioxidants, anticancer, and antiviral activities. 
Several recent reviews summarize advances in the application of 
coumarins, particularly concentrating their antioxidant properties 
[1]. The hydroxy coumarins, which are derivatives of the parent 
compound coumarin (Figure 1), are phenolic compounds known for 
acting as potent metal chelators and free radical scavengers. Hydroxy 
coumarins have attracted intense interest in recent years since 
they exhibit diverse pharmacological properties. Notable among 
these properties are their antioxidant effects that were extensively 
examined [1], and 3-aryl-4-hydroxycoumarin derivatives that proved 
to be good antioxidants [2,3].

DFT calculations were used in studying the antioxidant activities 
of many phenolic compounds such as flavonoid [4,5] as well as 
dihydrochalcone derivatives [6]. In contrast, very few studies have 
been reported on using DFT calculations to study the antioxidant 
activity of coumarins [7], and their derivatives such as 4-methyl 
coumarins [8] and some 4-hydroxy coumarin derivatives [9]. A brief 
computational study of the O-H bond dissociation energy of some 
3-aryl-4-hydroxycoumarin derivatives was recently conducted [2]. 

Up to our knowledge, there is no computational study on 
antioxidant activity of 3-aryl-4-hydroxycoumarin derivatives.In this 
work, quantum mechanical calculations at the B3LYP/6-31G (d,p) 
[10-24] level of theory shall be employed to obtain the energies (E), 
ionization potentials (IP) in the gas phase and implicit water solvent 
using the polarized continuum model (PCM), the bond dissociation 
enthalpy (BDE) of O-H bond and the stabilization energies (∆Eiso) 
of several 3-aryl-4-hydroxycoumarins as shown in Figure 2. The six 
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3-aryl-4-hydroxycoumarin derivatives (compounds I through V as 
shown in Figure 2) were studied, in addition to 4-hydroxycoumarin 
(Figure 1) as a reference. The corresponding values of these were 
utilized for the purpose of evaluating their relative scavenging 
activities. Calculations of the spin densities of these derivatives were 
also performed with the intent of exploring the stability of formed 
free radicals.

Computational Methods
Geometry optimization of the coumarin derivatives was carried 

out using density functional theory (DFT). It offers an excellent 
compromise between computational time and description of 
electronic correlation. The calculations were performed utilizing 
the Gaussian09 (G09) Quantum package [25]. Prior to any DFT 
calculations, all proposed structures were submitted to PM3 
geometry conformational search. After the PM3 initial optimization, 
the conformer with the lowest electronic energy was selected. And 
then the structure was re-optimized with the B3LYP hybrid density 
functional utilizing the 6-31G(d,p) basis set. This level of theory 
was used previously to investigate antioxidant activity of various 
compounds [6,7]. The B3LYP optimized structure was ascertained 
to conform to a real minimum utilizing frequency calculation (no 
imaginary frequency). The radicals were treated as open shell systems. 
The OH bond dissociation enthalpies (BDE), for hemolytic O-H 
bond cleavage in the gas phase at 298.15 K was calculated using the 
sum of electronic and thermal enthalpies according to

BDE (OH) = Hr + H – Hp

Where Hr is the enthalpy of the radical resulting from hydrogen 
atom abstraction, H is the enthalpy of hydrogen atom (-0.49765 
Hartrees same as reference [6]), while Hp is the enthalpy of the parent 
molecule.

The ionization potential (IP) in the gas phase and in implicit 
water was estimated using the polarized continuum model (CPCM). 
It was calculated as the enthalpy difference between a radical cation 
(Hc) and the respective parent molecule (Hp)

IP  =  Hc –  Hp 

The radical stability was determined through the calculations 
of the stabilization energy (∆Eiso) (as shown below), in which it 
represents the hydrogen transfer in the coumarin. The coumarin 
derivatives are represented by ArOH while the phenol molecules are 
represented by PhOH, according to

∆Eiso =   [ArO˙] + [PhOH] – [ArOH] + [PhO˙]

Results and Discussions
Figure 3 shows the optimized structures of 3-Aryl-4-

hydroxycoumarin derivatives at B3LYP/6-31G(d,p) level of theory. 
The stabilization energy (∆Eiso) is used as a simple yet very useful 
method for predicting the ability of antioxidants to trap free radicals 
of phenolic derivatives, which was previously utilized to study the 
ability of several phenolic compounds [6]. The stabilization energies 
of the phenoxy radicals were calculated and the values of ΔEiso are 
shown in Table 1. From this table, we conclude that the presence of 
hydroxyl group on the 3’-phenyl ring increases the ΔEiso due to the 
fact that more oxygen atoms of the phenolic hydroxyl groups can 
donate electrons to stabilize the semiquinone form. In addition, the 
presence of chlorine atom at position 6 on the coumarin skeleton of 

A B
Figure 1: Structures of coumarin (A) and 4-hydroxycoumarin (B).

I. R1 = H, R2 = H, R3 = H. 
II. R1 = H, R2 = OCH3 = H. 
III. R1 = H, R2 = CH3 R3 = H. 
IV. R1 = H, R2 = H, R3 = OH. 
V. R1 = Cl, R2 = H, R3 = OH. 

Figure 2: Structures of the 3-Aryl-4-hydroxycoumarin derivatives.

Compound Energy of Parent 
Compound (Hartrees) 

Energy of 
Radical 
(Hartrees)

Δ Eiso kcal/
mol

phenol -307.473071 -306.8353848 0.00 

4-hydroxy 
coumarin -572.2264418 -571.56559 14.54 

I -803.3117541 -802.6492861 15.55 

II -917.8326438 -917.17148 14.73 

III -842.6320917 -841.9701245 15.24 

IV-OH(4) -878.5315122 -877.8685027 15.89 

IV-OH(3') -878.5315122 -877.8761878 11.07 

V-OH(4) -1338.052429 -1337.421799 -4.43 

V-OH(3') -1338.052429 -1337.391787 14.41 

Table 1: Stabilization energies of phenoxy radicals relative to phenol. The 
position of the most stable hydroxyl radical is given in parenthesis. The energies 
were calculated at B3LYP/6-31G(d,p) level of theory.

Compound BDE (Kcal/
mol)

IP in gas 
(kcal/mol)

IP in CPCM 
(Kcal/mol)

% 
Scavenging*

ORAC 
values*

4-hydroxy 
coumarin 112.36 214.90 144.99 61.9 4.2

I 79.29 172.04 136.10 45.1 4.4

II 76.17 161.94 128.09 46.3 5.7

III 78.29 168.16 133.33 34.6  6.5

IV-OH(4) 80.26 169.20 133.93 40.2 4.9

IV-OH(3') 82.96 169.20 133.93 40.2 4.9

V-OH(4) 80.15 173.44 136.81 100 7.7

V-OH(3') 46.43 173.44 136.81 100 7.7

Table 2: Ionization potentials (IP) and bond dissociation energies (BDE) for 
3-aryl-4-hydroxycoumarin derivatives.

Taken from reference [3]
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compound V leads to increase the stability energy significantly. For 
IV-OH structure, the radical being on position 3’ is more stable than 
on position 4. While for structure V-OH, the most stable radical is 
being at position 4 due to the effect of the chlorine atom on coumarin 
ring. For V-OH(4), the ΔEiso reaches -4.43 kcal/mol. Adding phenyl 

group to 4-hydroxy coumarin (compound B) and adding electron 
donating group such as methoxy or methyl (compounds II and III) 
do not seem to be important on ΔEiso values.

The bond dissociation energy (BDE) of a hydroxyl group involves 
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Figure 3: Optimized structures of 3-Aryl-4-hydroxycoumarin derivatives.
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Figure 4: The spin densities for the semiquinone derivatives.
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H-atom transfer whereas the ionization potential (IP) refers to an 
electron transfer process. Hence, there are two main theoretically 
accepted physical parameters for evaluating the possible antioxidant 
capacity of a molecule. In general, the weaker an O-H bond and the 
lower is the ionization potential of an antioxidant, the more active 
would the antioxidant be in reacting with radical molecules [8]. 
Hydroxycoumarins are believed to behave like classic phenol- or 
quinol-based antioxidants; in which the O-H group attached to an 
aromatic ring structure can take part in an H-atom transfer and/or an 
electron transfer process impacting the reduction of a free radical [8]. 

The capacity of scavenging peroxy radicals was studied 
experimentally through the oxygen radical absorbance capacity 
method using the fluorescence-based technology of detection 
measurements (ORAC-FL) [3]. The ORAC-FL assay depends on the 
free radical damage to a fluorescein. The presence of antioxidants 
results in an inhibition of the free radical damage to the fluorescent 
compound. This inhibition is observed as a preservation of the 
fluorescent signal. The area under the curve (AUC) from the 
experimental sample is calculated to quantitate the protection. AUC 
calculation indicates both the inhibition time as well inhibition 
percentage of free radical damage by the antioxidant [3]. Also, the 
percentage of the hydroxyl radical scavenging activity was studied 
previously by Perez-Cruz and coworkers [3]. The results of the bond 
dissociation energy (BDE), an ionization potential (IP), % scavenging 
and ORAC values are shown in Table 2. The 4-hydroxy coumarin 
is used as reference molecule. When a phenyl group is added at 
position 3 in the compound I, the delocalization of semiquinone 
radical increases; thus influencing ORAC values to be changed. As 
seen in Table 2, both the BDE and IP in the gas and solvent phases 
decrease significantly, which means an increase the antioxidant 
activity. In the compound II, in which the phenyl ring presents a 
p-methoxy group, and in the compound III with a p-methyl group, 
a decrease in BDE with respect to the compound I is observed and 
subsequently ORAC and antioxidant activity increase. This fact can 
be explained by the strong electron-donating effect that increases the 
electron density around the hydroxyl group, favoring the hydrogen 
atom transfer mechanism, which is detected by decreasing BDE. 
For compound IV, although the BDE for hydroxyl groups is higher 
than compound I, increasing the number of hydroxyl groups leads to 
increase antioxidant activity. Compound V has the lowest BDE of 46.4 
kcal/mol. It is indicated that it has the highest antioxidant activity. 
These values agree with experimental results [3] since compound 
V has the highest % scavenging and the highest ORAC values. The 
mechanism which involved in radical scavenging process for these 
3-aryl-4-hydroxycoumarin derivatives is mainly H-atom transfer [3]. 
The result in Table 2 shows that BDE has a better correlation with 
antioxidant activity than IP values.

Spin density is an important parameter for characterizing the 
stability of free radicals since the energy of a free radical can be 
substantially lowered wherever unpaired electrons become highly 
delocalized through a conjugated system, following hydrogen 
abstraction [6,26]. The spin densities for the semiquinone derivatives 
are shown in Figure 4. The calculated spin densities of hydrogen 
abstraction from phenolic hydroxyl group showed that the phenolic 

oxygen contribution O4 is between 15-27%. For phenolic oxygen O3’, 
the C3 carbon, the C2’, and C6’ carbon atoms at ortho positions and 
C4’ carbon atom at the para position are between 43-46%, 2-78%, 11-
42%, and 16-35%, respectively. The lowest contribution of phenolic 
oxygen (being between 15-18%) showed the highest scavenging 
activity values due to the electronegativity of oxygen and to the fact 
that their compounds have more resonance spin structure. 

Conclusion
The antioxidant prediction of some 3-phenyl-4-hydroxycoumarin 

derivatives was investigated theoretically at B3LYP/6-31G(d,p) level 
of theory. Phenyl group at position 3 of coumarin skeleton has great 
importance in the resonance stabilization. The introduction of an 
electron-donating group such as methyl, methoxy, and hydroxyl 
group on the 3-phenyl ring decreases the BDE when compared to 
4-hydroxy coumarin, resulting in better antioxidant activity. The 
presence of chlorine atom at position 6 on the coumarin skeleton is an 
important structural factor that decreases the BDE (O-H) significantly 
and increases the antioxidant activity. The phenolic oxygen with 
lowest spin density contribution has the highest scavenging activity 
values. Our results showed that hydrogen donation BDE (O-H) 
is more related to the scavenging activity of 3-phenyl-4-hydroxy 
coumarin derivatives.
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