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Abstract

Supported membranes represent an elegant route to designing well-defined fluid interfaces which mimic many physical-chemical properties of biological 
membranes. Growths in the applications of physical approaches in understanding and controlling lipid membranes have witnessed a rapid growth in recent 
years. The present reviews highlight some of the key challenges of cellular membranes and exemplify their utility in fundamental biophysical studies and 
technological applications.
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depositing lipid onto solid surfaces or immersing solid into lipid 
solution to yield large areas with excellent mechanical stability without 
losing their fluid nature. The combination of fluidity and stability on 
planar surfaces offer advantages over self-supporting membranes 
as it gives a chance to investigators to carry out experiments and 
use analytical methods that are difficult or impossible to be used 
with biological membrane [4,5]. Typically, suspended bilayer lipid 
membranes are formed on porous, synthetic substrates, including 
polycarbonate, teflon, nylon, alumina, silicon, glassy carbon, and 
metal. The formation of bilayer lipid membrane (BLM) on these 
supporting substrates relies on the hydrophobic interactions between 
the amphiphilic (both hydrophilic and hydrophobic) phospholipids 
molecules and water. The charged sites on bilayer lipid membranes 
play the crucial role in determining the magnitude of membrane 
potential as well as for many biological functions such as drug 
application [6,7].

The membrane potential derives ultimately from two factors: 
electrical potential and chemical potentials (diffusion). Electrical 
potential arises from the mutual attraction between particles with 
opposite electrical charges (positive and negative) and the mutual 
repulsion between particles with the same charge. Diffusion (chemical) 

Introduction
Membranes are vital components of all living systems forming 

the outer boundary of cell organelles which contain lipid and 
carbohydrate. The basic function of membrane is to define a boundary 
between or within cells and organelles. Many cellular processes 
depend on the membranes’ selectivity and ability to separate different 
area and strongly regulate transport within and across membranes. 
Membrane can be natural (biological) or artificial (model) that mimic 
biological membrane. Lipids that organized into a bilayer, serve 
as a basic matrix for other constituents of biomembranes, namely, 
protein and carbohydrate. The lipid components in bio-membranes 
are zwitterionic phospholipids [1,2]. The complexity of biological 
membranes and their interactions with intra and extracellular 
networks make direct investigations difficult especially for specific 
ion transportation. Due to this reason; model membranes have played 
an important role in identifying and understanding property of bio-
membranes [3].

During the last 20 years, phospholipids bilayers deposited onto 
solid substrates have been the most commonly used experimental 
model systems. These model systems are readily prepared by directly 
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potential arises from the tendency of particles to diffuse from regions 
of higher concentration to regions where the concentration is low [8].

Another electrical property of membrane is its conductivity that 
helps in the evaluation of thermodynamic activation parameters. 
Membrane conductivity refers to the capability of a cell to allow ions 
to permeate as well as accumulation of ions in the interior of the 
membrane. Both membrane potential and conductance can help in 
the investigation of ion transport properties of membranes [9].

In nature, ion transport plays a vital role in the intra-cellular 
movement. Different studies were done on ion transport across sBLM 
and the factors that affect it. For example, transport of ions such as 
Na+, K+ Mg2+, Ca2+, Cu2+ and Zn2+ can be affected with various drugs 
such as captopril, quercetin, cholicalciferon cyclosporin A, etc. [8,10-
15].

Biological membranes

Biological membranes are basic components of all living systems. 
These are composed mainly of lipids and are known to be asymmetric 
in lipid composition of their leaflets. A model of biological membrane 
is bilayer lipid membrane consisting of two lipid monolayers 
sandwiched together in which the hydrophobic tails interact in the 
interior of the membrane and the hydrophilic head groups comprise 
both the outer surfaces [5].

Model membranes

Phospholipid bilayer membranes represent a useful model system 
to investigate basic aspects of the lipid bilayer which is components 
of biological cell membranes and, particularly, to study the ionic 
transport processes. The molecules that form the bilayer of cell 
membrane are Phosphatidylcholine (PC) and Phosphatidylserine 
(PS).

Phosphatidylcholine molecule has a zwitterionic head group that 
consists of a negatively charged phosphate and a positively charged 
choline group (Figure 1). It is more abundant and inexpensive than 
other lipids. This molecule can form bilayers and is considered as a 
model of a biological membrane on substrate. It can also form a bilayer 
in aqueous solution spontaneously with the hydrophilic headgroups 
in contact with water and hydrophobic alkyl chains inside the bilayer 
(Figure 2).

The supporting substrate, like silicon, glass, quartz, metals, mica, 
polymers, etc., can be used to increase the strength and mechanical 

stability of the BLM. The electrical properties of lipid bilayers have 
been characterized by experimental techniques such as fluorescence 
microscopy, X- ray diffraction, Impedance Spectroscopy, electron 
microscopy, atomic force microscopy, nuclear magnetic resonance 
spectroscopy, potential and conductance measurement, etc. [16,17]. 
All of the above techniques strongly depend on the physico-chemical 
conditions, such as ionic strength, pH of the aqueous solvent, 
temperature, besides the structural arrangement of the hydrophobic 
lipid matrix. Different techniques such as, potential measurements, 
titration techniques, conductance measurements, and electrokinetic 
measurements have been applied to study the ionization of lipid 
headgroups. The majority of electrokinetic studies have been 
performed at lipid vesicles in aqueous electrolyte solutions. This gives 
information on the lipid density, diffusion, the lipid headgroups, alkyl 
chain orientation, the electrostatic potential, the dipole moment of 
the membrane, and ion binding to the lipid membrane [18-22].

Electrical Properties of Membrane
Membrane potential

Membrane performance can be characterized by measuring the 
membrane potential and conductance. By definition, the membrane 
potential is the potential difference that is generated between 
two solutions of the same electrolyte at different concentrations 
separated by a charged membrane within two compartments [23]. 
The membrane potential can be expressed by the difference between 
internal and external potential in the membrane [24]. However, it is 
clear that, as a result of concentration gradient across the membrane, 
the concentrations of counterions at the membrane-solution 
interfaces at both sides show variations during the membrane 
potential measurements. It has been also reported in the literature 
that membranes with none uniformly distributed fixed charges can 
have different ion selectivity compared to membranes with uniformly 
distributed charges. Membrane potentials in cells are determined 
primarily by factors such as concentration of ions on the inside and 
outside of the cell and the permeability of the cell membrane to these 
ions [25]. The membrane potential data helps in the evaluation of 
the magnitude of effective fixed charge density which is one of the 
selectivity parameters charged membranes [26].
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Figure 1: Structure of Phosphatidylcholine (http://www.rpi.edu/dept/bcbp/
molbiochem/MBWeb/mb1/part2/lipid.htm accessed on 11/12/2013).
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Figure 2: Diagram of solid supported phospholipids bilayer membrane [26].
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Membrane conductance

Membrane conductivity is the measurement of a cell membrane’s 
potential for both permeation and resistance to being permeated in 
which membrane can have both permselectivity and permeability 
property [8]. It is an electrical term meaning the reciprocal of 
resistance that mainly depends on concentration and temperature of 
bathing electrolyte. There are three types of membrane conductivity 
that are measured; the first one is the ability of all solutes such 
as water and solute to permeate a cell wall without resistance. The 
second form of membrane conductivity is semi-permeable, in which 
the membrane is impermeable to solutes and absorbed interior of cell 
membrane but permeable to biological molecules such as water. The 
last form of conductivity is impermeable, in which no form of solute 
can permeate but absorbed interior of cell membrane [9].

Although the electrical properties of lipid bilayers, which are 
of fundamental importance in many areas of biology, have been 
characterized by means of different experimental techniques such as,  
electron microscopy and electrochemical impedance spectroscopy 
(EIS), the basic mechanism of the ion translocation and ion permeation 
responsible for the observed, relatively low conductance is not yet 
completely understood, and the fact that the electrical conductance 
reflects different averaged processes at a macroscopic level [10,11]. 
The conductance of biological membranes is much higher, typically 
by several orders of magnitude than model membrane. The reason is 
that there are all kinds of ion channels and other pores penetrating 
the membrane and allowing additional currents to flow. This is due 
to the more selective behavior of biological membrane towards ion 
found around it [12]. We can obtain the values of activation parameter 
such as change in entropy, enthalpy and free energy from membrane 
conductance which indicate permeability as well as permselectivity 
of model membrane. The earlier studies showed that low value of 
free energy is related to spontaneous flow of ions into the model 
membrane and high value of entropy results in high magnitude of 
membrane conductance [15].

Ion Transport across Lipid Bilayer and Natural 
Membranes

Phospholipids bilayer membranes represent a useful model 
system to study basic aspects of passive ionic transport across the 
lipid bilayer components of biological cell membranes [12]. In the 
simplest version of the transport model of ions in layered or confined 
structures, ions must diffuse up to the membrane, adsorb, cross the 
membrane pore, desorbs, and finally diffuse away on the other side of 
the membrane (Figure 3). Such a transport is basically dependent on 
the size of permeate species as well as on the extent of permeate-fixed 
charge group interactions. Among the different steps describing the 
overall transport of an ion across the lipid membrane, the adsorption 
and desorption processes are particularly dependent on the chemical 
potential and voltage drops in the polar and non polar regions and 
on the thickness of the double layer at the surface of the charged 
membrane. The flux of cations and, to a lesser extent, anions can 
be qualitatively justified by a diffusion process through short-lived, 
water-filled pores formed as consequence fluctuations in the lipid 
organization that allow ions to pass throughout the bilayer [13].

Ion transport across biomembranes is associated with various 
biofunctions, such as, metabolism, photosynthesis, neurotransmission 
[27]. The fluid on both sides of the membrane contain high 
concentrations of mobile macro ions such as, sodium (Na+), potassium 
(K+), chloride (Cl–), calcium (Ca2+) and micro ions such as Mn2+, 
Zn2+, Cu2+, Fe2+, and Co2+ [8,28]. These ions are transported across cell 
membrane, but anions such as bicarbonate, sulfate, oxalate, formate, 
etc., are not transported easily, probably, because they consists nuclei 
of different elements and they are highly hydrated as a result of which 
these species face difficulty in getting transported across sBLM. 
[8,13,29-30].

Transport of iron in natural membrane

Iron compounds have been classified as water soluble (ferrous 
sulfate, ferrous gluconate, ferrous lactate, ferrous ammonium sulfate), 
poorly water soluble but soluble in diluted acids (ferrous fumarate, 
ferrous succinate, ferric sacharate), poorly soluble in water or 
acid solutions (ferric pyrophosphate, ferric orthophosphates) and 
protected compounds (hemoglobin). Ferrous sulfate is the most 
common type of iron supplement. Other available forms include 
ferrous fumarate, ferrous succinate, ferrous gluconate, ferrous lactate, 
ferric ammonium citrate, ferrous glycine. Most of the time iron can be 
taken by human body in the form of ferrous rather than ferric because 
it is easily absorbed by cell membrane and soluble at physiological 
condition which is difficult for ferric [31].

Transport of iron across a cell membrane is important to human 
beings. But its transport as well as absorption can be affected by 
drugs such as anti-acids, Aspirin, Aminosalicylic acid Cholestyramin, 
Colestipol, Amino salicylic acid, Allopurinol, Acetohydroxamic 
acid which is taken for different disease such as, anti-inflammatory, 
tuberculosis and others [32]. Iron can be absorbed by the enterocyte 
in the duodenum and upper jejunum in the apical membrane with in 
different form.

First, consider absorption of iron in the ferrous and ferric forms 
(example, iron salts). Dietary Fe3+ (ferric) forms are converted to the 
Fe2+ (ferrous) forms in the stomach. This reduction is greatly promoted 
by the presence of H+ and dietary ascorbic acid. The great advantage 
of this conversion is that the ferrous form as compared to the ferric 
form is much more easily released from the organic ligands to which 
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Figure 3: Transport of ion across model membrane; A) movement of ion 
from high concentration to lower; B) after cation transported towards lower 
concentration
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it is bound and stays soluble [33]. Ferric iron precipitates at pH >3 (as 
found in the duodenum) and is not available for absorption from such 
precipitates. Ferrous iron remains soluble up to pH values of about 
7.5 and is available for absorption. In addition at the low gastric pH, 
some substances (example, some amino acids) can bind with ferric 
iron to form a soluble chelate from which iron can be absorbed in 
the duodenum [34]. So the ideal situation is either reduction of ferric 
iron to ferrous iron, which can soluble at physiological pH in the 
duodenum, or the formation of soluble chelates from which ferric 
iron can be readily released at the apical membrane of the duodenal 
enterocyte. Both these processes are facilitated by a low gastric pH. 
The absorption pathway in the membrane involves a ferrireductase 
which converts any free ferric iron into the ferrous form. The ferrous 
form is then transported across the membrane and easily absorbed 
[34,35].

Second, consider the absorption of haem. Dietary haemoglobin 
and myoglobin is degraded releasing haem. Haem is soluble in the 
alkaline duodenal contents but almost insoluble at a pH < 6. It is 
readily absorbed as an intact metallo-porphyrin by the mucosal 
cells by a process involving a haem receptor. Haem is broken down 
in the enterocyte by haem oxygenase releasing the Fe2+ and easily 
undergo absorption [35,36]. Different vitamins facilitate absorption 
or transport of iron in cell membrane; for example, Vitamins A and C 
improve absorption as well as transport of iron. As the previous study 
shows there was a significant increase in iron absorption when both 
vitamins were present in diet [36,37].

Effect of Drug on Membrane Transport

Drugs can bind to lipid membranes and potentially modulate the 
physical properties of that membrane. However, the cell membrane is 
a carefully balanced environment and any changes inflicted upon its 
structure by a drug molecule must be considered in conjunction with 
the overall effect which may affect the function and integrity of the 
membrane [38].

Cyclosporine A (CsA) is a drug which is used to prevent 
graft rejection after organ transplantation. Its interactions with 
phosphatidylcholine and cholesterol can affect transport of ion 
across cell membrane by affecting porosity, selectivity, and can also 
modulate peripheral lipid-protein interactions [39,40]. Most of 
the time molecular targets for drugs are proteins (mainly enzymes, 
receptors and transport proteins), pores of fixed sites and nucleic 
acids. The interaction of a drug with a macromolecular target 
involves a process known as binding. There is usually a specific area 
of the macromolecule where this takes place, and this is known as the 
binding site. Typically, this takes in the form of a hollow or canyon on 
the surface of the macromolecule allowing the drug to sink into the 
body of the larger molecule [41].

Some drugs react with the binding site and become permanently 
attached via a covalent bond. However, most drugs interact through 
weaker forms of interaction known as intermolecular bonds. These 
include electrostatic or ionic bonds, hydrogen bonds, Vander Waals 
interactions, dipole-dipole interactions and hydrophobic interactions. 
It is also possible for these interactions to take place within a molecule 
that called intermolecular bonds. None of these bonds is as strong 

as the covalent bonds that make up the skeleton of a molecule, and 
so they can be formed, and then broken again. This means that 
equilibrium takes place between the drug being bound and unbound 
to its target. The binding forces are strong enough to hold the drug 
for a certain period of time to let it have an effect on the target, but 
weak enough to allow the drug to depart once it has done its job. The 
length of time the drug remains at its target will then depend on the 
number of intermolecular bonds involved in holding it there. Drugs 
having a large number of interactions are likely to remain bound 
longer than those that have only a few. The relative strength of the 
different intermolecular binding forces is also an important factor. 
Functional groups present in the drug can be important in forming 
intermolecular bonds with the target binding site. If they do so, they 
are called binding groups. However, the carbon skeleton of the drug 
also plays an important role in binding the drug to its target. The 
specific regions where this takes place are known as binding regions 
[42].

Vitamin B6, which is called pyridoxine, is one of vitamins B 
complex. Physician advice vitamin B complex for management of 
anemia because it increases absorption of different vitamins for human 
body, all vitamins B help the body to convert food (carbohydrates) 
into fuel (glucose), which is burned to produce energy. Vitamins B 
complex are necessary for healthy skin, hair, eyes, liver and body 
metabolize fats and protein. They also help the nervous system 
function properly. Vitamin B6 also helps the body to make several 
neurotransmitters, chemicals that carry signals from one nerve cell 
to another. It is essential for normal brain development and function, 
and helps the body make the hormones serotonin and norepinephrine 
and melatonin (which helps regulate the body clock) [43]. It is 
important for the proper functioning of enzyme reactions, for amino 
acid synthesis, metabolism of fatty acids, synthesis of prostaglandins, 
manufacture of all amino acid, dopamine, epinephrine as well as in the 
conversion of tryptophan to vitamin B3, and for the transportation of 
magnesium and zinc across cell membranes. It is important for the 
health and proper functioning of the immune system, the skin and 
mucous membranes.

Along with vitamins B12 and B9 (folic acid), B6 helps control levels 
of homocysteine in the blood. Homocysteine is an amino acid that 
associated with heart disease. B6 is also necessary for the production 
of red blood cells and cells of the immune system, its deficiency 
includes muscle weakness, nervousness, irritability, depression, 
difficulty concentrating, and short-term memory loss, skin problems, 
cracking of the lips and tongue, anemia, peripheral neuropathy, 
insomnia, and depressed immune function [44] . Pyridoxine is also 
used to prevent or treat a nerve disorder caused by certain medications 
(such as isoniazid), to treat certain hereditary disorders (such as 
xanthurenic aciduria (genetic disorder), cystathioninuria (metabolic 
disorder). and in the production of DNA and RNA, the body’s genetic 
material [43-45]. Even though this drug has so many advantages, little 
information is available on its effect on iron transport across sBLM.

The effect of combined pyridoxine and riboflavin deficiency on 
tissue iron content was studied in rats, which were given in the form 
of diet. Iron concentration of pyridoxine and riboflavin deficient rats 
was lower. The obtained results suggest that riboflavin and pyridoxine 
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deficiency can damage the absorption and utilization of iron [46]. 
Finally understanding the effect of drug in which it interacts with cell 
membrane has critical importance in pharmacological science which 
used to know the toxicity as well as its efficiency. Embedment of the 
drug molecules into the hydrophobic region of lipid bilayer decreases 
the rate of the performance of lipid and consequently, reduction of 
membrane free volume. Experimental work on model membrane has 
demonstrated that the membrane properties can strongly affected 
by the presence of membrane associated molecules as well as the 
presence of drug. Examples of parameters that can be affected by 
drug-membrane interactions include the conformation of acyl groups, 
the membrane surface and thickness, the membrane potential, the 
porosity behavior and the membrane fusion proteins [47].

Conclusion
Drugs affect the selective transport of ions across membrane. 

Supported bilayer lipid membrane has been found to become more 
selective in the presence of drugs as a result the membrane potential 
gradually increased with decrease in drug concentration. In addition 
the effective charge densities become higher in the presence of this 
drug. It would be possible to increase the selectivity behavior of model 
membrane towards specific cations in the presence of a given drugs 
with incorporating of ion channel that increasing both permeability 
and permselectivity properties model membrane which is special 
property of membrane.
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