# Indian Journal of Nutrition



Volume 3, Issue 1 - 2016 © Armunanto MPH, et al. 2016 www.opensciencepublications.com

# Iodized Salt Profile at Regional Markets in East Java According to the Indonesian National Standard Analyzed by Spectrophotometric Method

# **Research Article**

# Armunanto MPH<sup>1\*</sup>, Djoko Agus Purwanto<sup>2</sup>, Achmad Toto Poernomo<sup>2</sup>

<sup>1</sup>School of Public Health, Health Policy Studies, Airlangga University, Surabaya, Indonesia; currently affiliated with UNICEF Indonesia, Surabaya, Indonesia

<sup>2</sup>Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Airlangga University, Surabaya, Indonesia

\***Corresponding author:** Armunanto MPH, School of Public Health, Health Policy Studies, Airlangga University, Surabaya, Indonesia, Mulyorejo Street Campus C, Airlangga University Surabaya 60115, Tel: +62 811274845; Fax: +62 31 5965308; Email: armunanto\_armunanto@yahoo.com

#### Article Information: Submission: 17/06/2016; Accepted: 01/07/2016; Published: 07/07/2016

**Copyright:** © 2016 Armunanto MPH, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

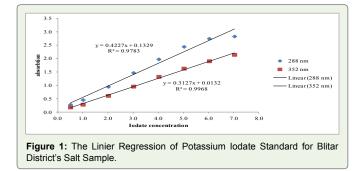
Background and Objectives: A study on the iodine contents of iodized salt at regional markets in Blitar, Ngawi, Gresik, and Pasuruan districts, East Java Province has been held by analysing 202 samples of various brands from 21 regional markets. Insufficiency of iodine intake could lead to symptoms of iodine deficiency and disturbances such as mumps, extreme fatigue, mental retardation, and depression that collectively called IDDs. Therefore, the measurement of iodate in salt sample is important to know the difference of iodine contents in some salt samples that might be influenced by certain conditions, such as environments, transportation, package, and cooking methods.

Methods: The measurement of iodine-contents was done using the spectrophotometric method on λ 288 nm to λ 352 nm wavelength.

**Results:** The research revealed that in Blitar district, 20% iodized salt meet the Indonesian National Standard (SNI), while 80% did not meet the standard. In Ngawi district, 54% met the standard and 46% did not. In Gresik district, 50% meet the standard and 50% did not. In Pasuruan district, 50% met and 50% did not meet the standard.

Conclusions: There is still circulating salt that does not meet the requirements of SNI (a minimum of iodine-containing 30 ppm) and even some salt in circulation are still contain no iodine.

Keywords: Iodine-contents; Indonesian National Standard (SNI); Iodine; Spectrophotometric; East Java; Province.


#### Introduction

Iodine is a trace element compound which is important for human's nutrition. The World Health Organization (WHO) recommends 100mg/day for infants and 150mg/day for adult's intake of iodine [1]. Iodine is essential for synthesizing T3 and T4 hormones by thyroid glands [2]. The deposit of iodine in human body is the thyroid gland. Insufficiency of iodine intake could lead to symptoms of iodine deficiency and disturbances such as mumps, extreme fatigue, mental retardation, and depression that collectively called IDDs.

In 2015, WHO data shows there were 130 countries with IDDs problems, 48% in Africa, 41% in South East Asia and 11% in Europe

Table 1: The Linear Regression Measurement & Standard Correlation Coefficient KIO, For Blitar Sample.

| ppm   | λ 288 nm | λ 352 nm |
|-------|----------|----------|
| 0.502 | 0.2853   | 0.1827   |
| 1.004 | 0.4600   | 0.2862   |
| 2.008 | 0.9489   | 0.6142   |
| 3.012 | 1.4700   | 0.9607   |
| 6     | 1.9766   | 1.3248   |
| 5.020 | 2.4427   | 1.6317   |
| 6.024 | 2.7452   | 1.9062   |
| 7.028 | 2.8293   | 2.1456   |



and West Pacific. In Indonesia, between 1982 and 1990, the IDDs prevalence decreased from 37.2% to 27.7%, and in 1998 became 9.8%, while in 2003 the IDDs prevalence slightly increased to 11.1% [3]. It could be seen from the number of hyperthyroid and hypothyroid patients that were found almost in all regions in Indonesia. There are natural sources of iodine that can be found in food, including milk, vegetables, fruits, cereals, eggs, meat, spinach, and seafoods [4]. Yet, these natural sources of iodine might not fulfill the standard required by human bodies, because of the contents are too small [5-7].

The sufficient iodine intake could be done by consuming iodized salt. Iodized salt are made by adding iodate to salt sample, since it has good stability and bioavailability [8]. Therefore, the measurement of iodate in salt sample is important to know the difference of iodine contents in some salt samples that might be influenced by certain conditions, such as environments, transportation, package, and cooking methods [9].

It is known that the salt distributed in East Java Province, both for common consumption and for food industries' supply, should meet the Indonesian National Standard (SNI); There is also a Local Regulation issued by the East Java government number 11 in 2011 about community nutrition, since there were still many nutritional deficiency disease and also micro and macro nutrition insufficiency which cause stunted growth in East Java Province. In the local regulation, article 21 a, stated that the Counter measurement of IDDs was done by strengthening various fortification efforts. The problem is wether or not the fortification of Potassium Iodate in salt production done homogenously by farmers in order to meet the SNI in 2010 with minimum contents more than 30ppm.

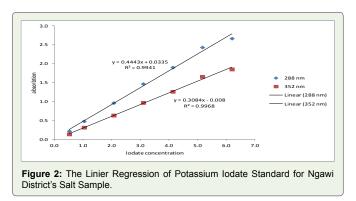
## Armunanto MPH

Therefore, this research would examine the iodine content in iodized salt that are distributed at four regional markets in Blitar, Ngawi, Gresik and Pasuruan district. Blitar and Ngawi districts were chosen to represent area with no salt producer, while Gresik and Pasuruan represented the areas with many salt producers. The study was done by using UV-V is spectrophotometric method with 288nm and 352nm wavelength.

# Methods

The method of spectrophotometric measuring equipment used in this study was the Spectrophotometer HP 8452A. Other equipment were funnels, measuring cups, volumetric flasks, and other glass equipment.

The materials used were analytical grade materials and dissolved in aquadest. The materials were Potassium iodide (E. Merck), potassium iodate (E. Merck), various brands of salt, and sodium chloride (E. Merck). NaOH, HCl. The solution was dissolved in demineralized aquadest in Erlenmeyer flask. The calibration curves was processed by using Microsoft Excel.


# Results

#### **Blitar District**

The total population of Blitar District is 1,268,194 persons (637,419 females and 630,775 males). Area of that district is about 1,588 km<sup>2</sup>; the population density is 700 persons/km<sup>2</sup>. The district consists of 22 sub-districts and 248 villages. Location of that district is from 111°40<sup>1</sup> till 112°10<sup>1</sup> east longitude and 7°58<sup>1</sup> till 8°9<sup>1</sup>51<sup>11</sup> south latitude. Labor force sectors are agricultural (60%), service (25%), and manufacture (15%).

This is the profile of iodized salt in Blitar district markets, by March - August 2015. According to the SNI (Indonesian National Standard) requirement, majority (80%) of salt consumption do not meet the standard whilst the rest (20%) meet the standard. Both of salts are sold in 62 traditional markets in Blitar. Types of those SNI salts are briquettes (11%), coarse (33%), and refined (56%). As the reagent, 3.32gr KI was dissolved in aquadest until 100mL (KI 3.32%), add 5gr NaCl that has been dissolved in aquadest until 50mL (NaCl 10%), and 85% phosphoric acid made by dissolving 11.5gr phosphoric acid in aquadest until 100mL.

The Potassium Iodate ( $KIO_3$ ) standard solution was made by dissolving 0,1000gr  $KIO_3$  in 100mL volumetric flask, added with



#### Table 2: Iodine Content in Various Iodized Salt Brands in Blitar Regency

# Armunanto MPH

| Brand             | Salt type  | Producer's address           | Contents (ppm) |
|-------------------|------------|------------------------------|----------------|
| bu Bijak          | Refined    | Gresik district              | 16.3737        |
| 2 Anak Pintar     | Coarse     | PT. Budiono Indonesia        | 4.06786        |
| 2 Santri          | Briquettes | Pasuruan district            | 9.96598        |
| 36                | Briquettes | Pasuruan district            | 9.37268        |
| 9                 | Coarse     | Pasuruan district            | 9.44499        |
| AP                | Coarse     | East Java                    | -0.5982        |
| AS                | Coarse     | Sidoarjo city                | 2.59247        |
| A.P               | Refined    | East Java                    | 7.55133        |
| Anak Kembar       | Coarse     | Pasuruan district            | 13.479         |
| Berkah Inti Utama | Briquettes | Kediri district              | 14.3014        |
| Bintang Madura    | Coarse     | PT. Budiono Indonesia        | 2.48422        |
| Bintang Sembilan  | Coarse     | Indonesia                    | 0.3748         |
| Cendikiawan       | Coarse     | East Java                    | -2.7272        |
| Cerdik            | Refined    | Surabaya city                | 72.6869        |
| G                 | Coarse     | Sampang district             | 27.4499        |
| G                 | Briquettes | Kediri district              | 26.695         |
| G Anyar           | Coarse     | Kediri district              | 55.3096        |
| GG                | Coarse     | Pasuruan district            | 18.1445        |
| GS                | Coarse     | Sidoarjo city                | 5.97721        |
| G.S               | Refined    | Sidoarjo city                | 8.18196        |
| Gedong Songo      | Briquettes | Pati district – Central Java | 12.6824        |
| kan Layang        | Refined    | PT. Elitestar Prima Jaya     | 46.6136        |
| ndomaret          | Refined    | Indomaret                    | 61.3339        |
| Jagung            | Refined    | Pasuruan district            | 2.58988        |
| Kapal             | Refined    | Surabaya city                | 65.4472        |
| Kapal Layar       | Refined    | Pasuruan district            | 4.26818        |
| Karapan Sapi      | Refined    | Indonesia                    | 21.7809        |
| Macan             | Briquettes | Jombang district             | 36.0019        |
| Macan             | Briquettes | Jombang district             | 24.4886        |
| Maju Jaya         | Coarse     | Pasuruan district            | -1.3111        |
| Refina            | Refined    | Sidoarjo city                | 46.8543        |
| S                 | Refined    | Pasuruan district            | 45.3906        |
| S                 | Briquettes | Pasuruan district            | 64.9405        |
| S A               | Coarse     | Blitar district              | 28.2313        |
| S G               | Coarse     | Kediri district              | 9.05573        |
| S G               | Briquettes | Kediri district              | 19.2197        |
| S.G               | Refined    | Kediri district              | 4.44521        |
| Sarcil            | Coarse     | Surabaya city                | 50.3378        |
| Segi Biru         | Coarse     | UD. Berkah Inti Utama        | 25.8741        |
| Segitiga G        | Refined    | Sampang district             | 32.9568        |
| Segitiga PS       | Refined    | Kediri district              | 25.0385        |
| Sinar Laut        | Coarse     | Indonesia                    | 3.80876        |
| Sumatraco         | Coarse     | Surabaya city                | 65.5135        |
| Tali Bumi         | Coarse     | Pasuruan district            | 9.91339        |
| No brand          | Coarse     | -                            | 10.534         |
| No brand          | Coarse     | _                            | 10.6408        |

<sup>03</sup> 

 Table 3: The Linear Regression Measurement & Standard Correlation Coefficient

 KIO3 for Ngawi Sample.

| ppm   | λ 288 nm | λ 352 nm |
|-------|----------|----------|
| 0.517 | 0.2159   | 0.1322   |
| 1.034 | 0.4753   | 0.3106   |
| 2.068 | 0.9596   | 0.6322   |
| 3.102 | 1.4645   | 0.9650   |
| 4.136 | 1.9009   | 1.2591   |
| 5.170 | 2.4298   | 1.6521   |
| 6.204 | 2.6651   | 1.8492   |

aquadest until exactly to the 1000ppm mark. Put  $10mL \text{ KIO}_3$  standard solution 1000ppm into 100mL volumetric flask, and add aquadest to the 100mL mark (100ppm).

The Potassium Iodate ( $\text{KIO}_3$ ) standard solution was made by dissolving 0,1000gr KIO<sub>3</sub> in 100mL volumetric flask, added with aquadest until exactly to the 1000ppm mark. Put 10mL KIO<sub>3</sub> standard solution 1000ppm into 100mL volumetric flask, and add aquadest to the 100mL mark (100ppm).

Calibration curve was made by dissolving 0.05mL to 0.6mL KIO<sub>3</sub> 100ppm standard solution + 1mL 3.32% KI solution + 2mL 10% NaCl solution + 1mL phosphoric acid + added with aquadest to 10mL. Form: 1mL 3.32% KI solution + 1mL phosphoric acid + aquadest until 10mL. Examined by spectrophotometer in 288 nm and 352 nm wavelength. Regression: y = bx + a (y = absorbent; x = concentration).

Sample preparation; 0.2000gr salt sample dissolved with some aquadest (ultrasonic) + 1mL 3.32% KI solution + 1mL phosphoric acid + added with aquadest to 10mL. Examined by spectrophotometric method in 288 nm and 352 nm wavelength.

Types of those non SNI salts in Blitar District are briquettes (20%), refined (29%), and coarse (51%). The SNI iodine salt consumption are from PT. Elitestar (11%), Indomaret (11%), Pasuruan (11%), Kediri (11%), Sidoarjo (11%), and Surabaya (45%).

#### **Ngawi District**

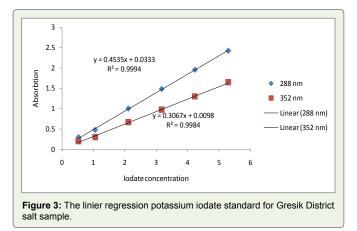
Total population of Ngawi District is 911,911 persons (463,487 females and 448,424 males). Area of that district is about 1,298 km<sup>2</sup>; the population density of is 705 persons/km<sup>2</sup>. In that area there are 19 sub-districts and 217 villages. Location of that district is from 7°21<sup>1</sup> till 7°31<sup>1</sup> south latitude and 110°10<sup>1</sup> till 111°40<sup>1</sup> east longitude. Sectors of labor force are agricultural (90%) and service (10%).

This is the profile of iodized salt sold in 29 traditional markets in Ngawi District, by March–August 2015. Based on the SNI requirement, majority (54%) of salt consumption meet the standard, whilst the rest (46%) do not meet the standard. Both of salts are available in 29 Ngawi traditional markets. Types of those SNI salts are coarse (21%), briquettes (32%), and refined (47%).

Types of those non SNI salts in Ngawi District are briquettes (13%), refined (37%), and coarse (50%). The SNI iodine salt consumption are from Sampang (5%), Surabaya (21%), Sidoarjo (21%), and Pati (53%).

# Armunanto MPH

Table 4: Iodine Contents in Various Iodized Salt Brands in Ngawi District.


| Brand        | Salt type  | Producer's address               | Contents<br>(ppm) |
|--------------|------------|----------------------------------|-------------------|
| Bintang      | Coarse     | Ngawi district                   | 16.94155          |
| Burung Laut  | Coarse     | Batangan – Pati. Central<br>Java | 26.95144          |
| Burung Laut  | Briquettes | Pati – Central Java              | 51.1671           |
| Cah Ndut     | Briquettes | Juwana-Pati. Central Java        | 57.7638           |
| Cerdik       | Refined    | Surabaya city                    | 56.06735          |
| D            | Refined    | Sidoarjo district                | 32.58838          |
| D            | Refined    | Sidoarjo district                | 31.95315          |
| Dan Dut      | Briquettes | Juwana-Pati. Central<br>Java     | 38.65876          |
| Dan Dut      | Coarse     | Juwana-Pati. Central<br>Java     | 44.67962          |
| Dara Ndut    | Briquettes | Juwana-Pati, Central<br>Java     | 39.48079          |
| Daun         | Refined    | Sidoarjo district                | 63.94747          |
| Dian Dut     | Briquettes | Juwana-Pati, Central<br>Java     | 74.71235          |
| Dian Dut     | Briquettes | Pati – Central Java              | 56.83408          |
| Gadjah       | Refined    | Pati – Central Java              | 25.91788          |
| Gadjah Bulan | Refined    | Pati – Central Java              | 36.50799          |
| Gadjah Bulan | Refined    | Pati – Central Java              | 63.37346          |
| Gadjah Duduk | Coarse     | Pati – Central Java              | 37.55598          |
| Gadjah Duduk | Coarse     | Juwana-Pati. Central<br>Java     | 35.53776          |
| GN           | Refined    | Pati – Central Java              | 61.58537          |
| Gunung Laut  | Coarse     | Batangan - Pati, Central<br>Java | 54.93943          |
| IBRD         | Coarse     | Ngawi district                   | 25.57761          |
| lbu Koki     | Refined    | Juwana-Pati, Central<br>Java     | 17.36607          |
| lkan Layang  | Refined    | Gresik district                  | 28.92612          |
| lkan Layang  | Refined    | Gresik district                  | 35.25855          |
| lkan Layang  | Refined    | Gresik district                  | 28.81951          |
| Jempol       | Refined    | Surabaya city                    | 68.83729          |
| Jempol       | Refined    | Sampang district                 | 69.36962          |
| KM           | Coarse     | Pati – Central Java              | 14.24312          |
| Koki Baru    | Briquettes | Pati – Central Java              | 62.47277          |
| Koki Baru    | Briquettes | Pati – Central Java              | 54.06805          |
| Kokiku       | Briquettes | Bumimulyo-Batangan               | 53.57445          |
| Kokiku       | Briquettes | Batangan – Pati, Central<br>Java | 34.18673          |
| Кири         | Coarse     | Batangan – Pati, Central<br>Java | 28.3006           |
| Mas Koki     | Briquettes | Pati – Central Java              | 111.9923          |
| Meja Daun    | Refined    | Batangan – Pati, Central<br>Java | 56.19684          |
| Naga         | Briquettes | NA                               | 18.21074          |
| Ndan Ndut    | Briquettes | Batangan – Pati, Central<br>Java | 39.00957          |
| NG           | Briquettes | Surabaya city                    | 27.20783          |
| NG           | Briquettes | Surabaya city                    | 100.1284          |
| R            | Refined    | Sidoarjo district                | 40.60887          |
| Reco         | Refined    | PT. Maju Makmur                  | 22.19066          |
| Reco         | Coarse     | PT. Maju Makmur                  | 17.64148          |
| Refina       | Refined    | Sidoarjo district                | 37.33492          |

| Refina         | Refined    | Sidoarjo district                | 52.83103 |
|----------------|------------|----------------------------------|----------|
| RN             | Refined    | UD Rizky Utomo                   | 13.92854 |
| S              | Coarse     | Surabaya city                    | 31.88989 |
| Segitiga G     | Refined    | Sampang district                 | 37.27662 |
| Segitiga G     | Refined    | Sampang district                 | 50.69062 |
| Segitiga G     | Coarse     | Sampang district                 | 22.06598 |
| Segitiga G     | Refined    | Sampang district                 | 61.46716 |
| Segitiga G     | Briquettes | Sampang district                 | 1.273601 |
| Segitiga M     | Refined    | Nganjuk district                 | 8.485078 |
| Segitiga Sriti | Coarse     | Sidoarjo district                | 17.89734 |
| SG             | Refined    | Kediri district                  | 16.02636 |
| SG             | Refined    | Kediri district                  | 22.49585 |
| SJ             | Coarse     | UD Davint                        | 18.16323 |
| Star Dut       | Briquettes | Rembang – Central Java           | 66.5469  |
| Tito           | Coarse     | Batangan – Pati, Central<br>Java | 9.653584 |
| Tito           | Coarse     | Pati – Central Java              | 22.52767 |

 Table 5: The Linear Regression Measurement & Standard Correlation Coefficient

 KIO3 for Gresik Sample .

| ppm   | λ 288 nm | λ 352 nm |
|-------|----------|----------|
| 0.529 | 0.29521  | 0.20448  |
| 1.058 | 0.47517  | 0.30348  |
| 2.116 | 1.0019   | 0.66183  |
| 3.174 | 1.4839   | 0.9738   |
| 4.232 | 1.9564   | 1.2964   |
| 5.29  | 2.4244   | 1.6493   |



#### **Gresik District**

Total population of Gresik District is 1,324,777 persons (657,209 females and 667,568 males). Area of that district is about 1,191 km<sup>2</sup>; the population density is 1,112 persons/km<sup>2</sup>. The area consists of 18 sub-districts and 356 villages. Location of that district is from 112° till 113° east longitude and 7° till 8° south latitude. Labor force sectors are agriculture (60%) and service/manufacture (40%).

This is the profile of iodized salt in 22 traditional markets in Gresik District, by March - August 2015. Based on the SNI requirement, it is found that the standardized salt is as much as the non- standardized salt. Types of those SNI salts are coarse (8%) and refined (92%).

# Armunanto MPH

Table 6: Iodine contents in various iodized salt brands in Gresik District.

| Brand            | Salt Type  | Producer's Address | Contents (ppm) |
|------------------|------------|--------------------|----------------|
| Anak Genius      | Refined    | East Java          | 13.9340        |
| Cerdik           | Refined    | Surabaya city      | 33.9558        |
| Daun Lompong     | Refined    | Sidoarjo district  | 27.9749        |
| Gajah            | Refined    | Gresik district    | 44.7281        |
| Gapuro Wali      | Refined    | Gresik district    | 5.6333         |
| Garami           | Refined    | Surabaya city      | 71.6514        |
| Ibu Bijak        | Refined    | Surabaya city      | 56.2716        |
| Ikan Layang      | Refined    | Gresik district    | 55.7522        |
| Indomaret        | Refined    | Surabaya city      | 54.9024        |
| Kapal            | Refined    | Surabaya city      | 64.8099        |
| Karapan Sapi     | Refined    | Surabaya city      | 75.5628        |
| Kuda             | Refined    | Surabaya city      | 53.5746        |
| Kuda             | Briquettes | Surabaya city      | 44.6317        |
| Lumbung Garam    | Refined    | Surabaya city      | 26.1507        |
| Piala Mas        | Briquettes | Pasuruan district  | 4.6104         |
| PS               | Refined    | Mojokerto district | 5.1167         |
| Putra Tunggal    | Refined    | Sidoarjo district  | 22.3157        |
| Segitiga Sarjana | Refined    | Sidoarjo district  | 62.4135        |
| Sriti            | Refined    | Surabaya city      | 11.2826        |
| Cermat           | Refined    | Sidoarjo district  | 23.8741        |
| Refina           | Refined    | Sidoarjo district  | 31.1824        |
| No brand         | Coarse     | NA                 | -0.3633        |
| No brand         | Coarse     | NA                 | 12.0450        |
| No brand         | Coarse     | NA                 | 12.2329        |

Table 7: The linear regression measurement & standard correlation coefficient  $KIO_{q}$  for Pasuruan sample.

| ppm   | λ 352 nm |
|-------|----------|
| 0.523 | 0.14955  |
| 1.046 | 0.34406  |
| 2.092 | 0.61775  |
| 3.138 | 0.97867  |
| 4.184 | 1.1923   |
| 5.23  | 1.6774   |

Types of those non SNI salts in Gresik District are coarse (22%), refined (39%), and briquettes (39%).

The SNI iodine salt consumption are from Indomaret (8%), Gresik (17%), Sidoarjo (17%), and Surabaya (58%).

#### **Pasuruan Distric**

The total population of Pasuruan District is 1,510,261 persons (762,885 females and 747,376 males). Area of that district is 147.401 Ha; the population density is 1,024 persons/km<sup>2</sup>. The district consists of 24 sub- districts and 365 villages. Location of this district is from 112°55<sup>1</sup> till 113°37<sup>1</sup> east longitude and 32°31<sup>1</sup> till 30°20<sup>1</sup> south latitude. Labor force sectors of this district are agriculture (60%) and service/manufacture (40%). There are 30 traditional markets available in this district.

This is the profile of iodized salt in 30 Pasuruan traditional

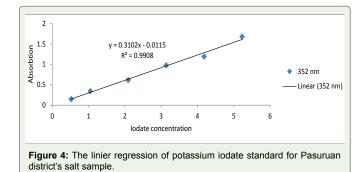



 Table 8:
 Iodine contents in various iodized salt brands in Pasuruan District markets.

| Brand                  | Туре       | Producer's address       | Contents (ppm) |
|------------------------|------------|--------------------------|----------------|
| 2 Anak Pintar          | Briquettes | NA                       | 14.7521        |
| 2 Anak Pintar          | Briquettes | PT. Budiono<br>Indonesia | 1.31059        |
| 2 Anak Santri          | Briquettes | Pasuruan district        | 21.0157        |
| 2 Putri                | Briquettes | Pasuruan district        | 32.1333        |
| 2 Putri                | Briquettes | Pasuruan district        | 12.4624        |
| 2 Putri                | Briquettes | Pasuruan district        | 13.5596        |
| 2 Santri               | Briquettes | Pasuruan district        | 19.4793        |
| 86                     | Briquettes | Pasuruan district        | 31.1479        |
| 86                     | Briquettes | Pasuruan district        | 11.3998        |
| 93                     | Briquettes | Pasuruan district        | 34.0805        |
| Anak Kembar            | Briquettes | Pasuruan district        | 20.563         |
| Anak Kembar            | Refined    | Pasuruan district        | 14.2179        |
| Anak Kembar            | Briquettes | Pasuruan district        | 10.2349        |
| Anak Kembar            | Refined    | Pasuruan district        | 20.4255        |
| Anak Santri            | Briquettes | Pasuruan district        | 25.6449        |
| AP                     | Refined    | East Java                | 15.2858        |
| AP                     | Refined    | East Java                | 9.83137        |
| AP                     | Refined    | East Java                | 29.6176        |
| Armada Kapala<br>Udara | Refined    | NA                       | 31.3787        |
| Bintang Jaya           | Briquettes | Pasuruan district        | 22.5903        |
| Daun                   | Refined    | Sidoarjo district        | 68.3894        |
| Daun Lompong           | Refined    | Sidoarjo district        | 62.6108        |
| Dolina                 | Refined    | Bandung                  | 62.1478        |
| Garami                 | Refined    | Surabaya city            | 83.1449        |
| Garami                 | Refined    | Surabaya city            | 52.0193        |
| Garami                 | Refined    | Surabaya city            | 52.9875        |
| Garami                 | Refined    | Surabaya city            | 89.4101        |
| GS                     | Refined    | Sidoarjo district        | 25.0743        |
| GS                     | Refined    | Sidoarjo district        | 13.0625        |
| Jangkar                | Briquettes | Probolinggo district     | 16.1609        |
| Jet Kapal              | Refined    | East Java                | 30.9059        |

| Kapal            | Refined    | Surabaya city     | 89.6041 |
|------------------|------------|-------------------|---------|
| Kapal            | Refined    | Surabaya city     | 51.1287 |
| Kapal            | Refined    | Surabaya city     | 48.619  |
| Kapal            | Refined    | Sidoarjo district | 69.5711 |
| Kapal            | Refined    | Surabaya city     | 24.7064 |
| Kapal            | Refined    | Surabaya city     | 31.2641 |
| Kapal            | Refined    | Surabaya city     | 78.2027 |
| Kapal            | Refined    | Surabaya city     | 85.57   |
| Kapal Helikopter | Refined    | East Java         | 20.0903 |
| Kapal Helikopter | Refined    | East Java         | 12.0815 |
| Kapal Helikopter | Refined    | East Java         | 21.1445 |
| Kapal Jungkang   | Refined    | Sidoarjo district | 81.8212 |
| Kapal Layar      | Refined    | Pasuruan district | 10.9202 |
| Kapal Layar      | Refined    | NA                | 15.2026 |
| Kapal Pesiar     | Refined    | Sidoarjo district | 16.2    |
| Kapal Udara      | Refined    | NA                | 75.5995 |
| Kepiting         | Briquettes | Pasuruan district | 31.9706 |
| Perang Kapal     | Refined    | Sidoarjo district | 28.2828 |
| Piala Mas        | Briquettes | Pasuruan district | 21.2181 |
| Piala Mas        | Briquettes | Pasuruan district | 30.1756 |
| Piala Mas        | Briquettes | Pasuruan district | 27.8694 |
| Putraku          | Briquettes | Pasuruan district | 23.4064 |
| Refina           | Refined    | Sidoarjo district | 91.3745 |
| Refina           | Refined    | Sidoarjo district | 58.698  |
| Refina           | Refined    | Sidoarjo district | 68.6431 |
| Refina           | Refined    | Sidoarjo district | 71.332  |
| Sarinah          | Refined    | Surabaya city     | 29.0852 |
| Sarinah          | Refined    | Surabaya city     | 91.9175 |
| Sarinah          | Refined    | Surabaya city     | 43.7362 |
| Segi A           | Refined    | East Java         | 46.9439 |
| Sinar Abadi      | Briquettes | Pasuruan district | 20.7649 |
| Sinar Abadi      | Refined    | Pasuruan district | 22.5016 |
|                  |            |                   |         |

markets, by March-August 2015. As well as in Gresik District, it is found in Pasuruan District that the SNI standardized salt is as much as the non-standardized salt. Types of those SNI salts are coarse (12%), briquettes (16%), and refined (72%). On the other hand, types of the non-SNI salts are coarse (12%), refined (40%), and briquettes (48%). The SNI iodine salt consumption are from Sampang (4%), Bandung (8%), East Java (8%), not known (8%), Pasuruan (16%), without brands (16%), Surabaya (20%), and Sidoarjo (24%).

# Conclusions

56% of refined salt, 33% of coarse salt and 11% of briquette salt in Blitar District were iodized salt that meet the SNI standard. 51% coarse salt, 29% refined salt, and 20% briquette salt in Blitar did not meet the SNI standard. The origin of iodized salt that meet the SNI standard in Blitar District were Surabaya 45%, Sidoarjo, Kediri,

# Armunanto MPH

Pasuruan, Indomaret and others were each 11%. While the iodized salt that did not meet the SNI standard were mostly came from Pasuruan (28%). In Ngawi district, 54% met the standard and 46% did not. Iodized salt that meet the SNI standard in Ngawi District was 47% of refined salt type, 21% of coarse type and 32% of briquette type. While the iodized salt that did not meet the SNI standard in Ngawi was 50% coarse, 37% refined and 13% briquette salt type. The origin of the iodized salt that meet the SNI standard in Ngawi were Pati 53%, Sidoarjo, Surabaya 21% each, and other regions 5%. While the iodized salt that did not meet the SNI standard and 50% did not. 92% refined salt and 8% briquette salt in Gresik District meet the SNI standard of iodized salt. While 22% coarse salt, 39% refined salt and 39% briquette salt in Gresik did not meet the SNI standard.

The origin of iodized salt that meet the SNI standard in Gresik District were Surabaya 58%, Sidoarjo, Gresik 17% each and other regions 8%. While the iodized salt that did not meet the SNI standard was mostly the iodized salt with no brands (25%). In Pasuruan district, 50% met and 50% did not meet the standard. 72% of refined salt, 12% coarse salt and 16% briquette salt in Pasuruan District meet the SNI standard. While 12 % coarse salt, 40% refined salt and 48% briquette salt did not meet the SNI standard. The origin of iodized salt that meet the SNI standard in Pasuruan were Surabaya 20%, Sidoarjo 24%, Pasuruan 16% and others 40%. While the iodized salt that did not meet the SNI standard was mostly came from Pasuruan (52%). There are still many iodized salt that did not meet the SNI standard in 2010 (minimal iodine-contain 30 ppm) distributed in markets, even

# Armunanto MPH

some of the distributed salt contain no iodine. Hopefully, the result of this research can be used for consideration of the East Java Local Government to uphold the regulation of iodized salt distribution that should meet the 2010 SNI standard.

# References

- 1. Hetzel BS (1983) lodine deficiency disorders (IDD) and their eradication. Lancet 2: 1126-1127.
- Visser TJ (2006) The elemental importance of sufficient iodine intake: a trace is not enough. Endocrinalogy 147: 2095-2097.
- Ellen GB, Kalpana T (2002) Iodine Deficiency Disorders and Universal Salt Iodization: South Asia Priorities. UNICEF Regional Office for South Asia PO. Box 5815, Kathmandu, Nepal.
- 4. Zimmermann MB (2009) Iodine deficiency. Endocrine Rev 30: 376-408.
- WHO (2007) Reducing Salt Intake in Populations, Report of a WHO Forum and Technical meeting 5–7 October 2006. Paris, France, WHO Library Cataloguing-in-Publication Data.
- WHO (2008) Salt as a Vehicle for Fortification Report of a WHO Expert Consultation, Luxembourg 21-22 March 2007. WHO Library Cataloguing-in-Publication Data.
- WHO (2014) Guideline: Fortification of food-grade salt with iodine for the prevention and control of iodine deficiency disorders. WHO Library Cataloguing-in-Publication Data.
- Bruchertseifer H, Cripps R, Guentay S, Jaeckel B (2003) Analysis of iodine species in aqueous solutions. Anal Bioanal Chem 375: 1107-1110.
- 9. Silva RL, Fernando de O, and Eduardo AN (1998) Spectrophotometric Determination of lodate in Table Salt. J Braz Chem Soc 9: 171-174.